Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The integration of solid-state single-photon sources with foundry-compatible photonic platforms is crucial for practical and scalable quantum photonic applications. This study explores aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics and the ability to host defect-center related single-photon emitters. We have conducted a comprehensive analysis of the creation of single-photon emitters in AlN, utilizing heavy ion irradiation and thermal annealing techniques. Subsequently, we have performed a detailed analysis of their photophysical properties. Guided by theoretical predictions, we assessed the potential of Zirconium (Zr) ions to create optically addressable spin defects and employed Krypton (Kr) ions as an alternative to target lattice defects without inducing chemical doping effects. With a 532 nm excitation wavelength, we found that single-photon emitters induced by ion irradiation were primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions. The density of these emitters increased with ion fluence, and there was an optimal value that resulted in a high density of emitters with low AlN background fluorescence. Under a shorter excitation wavelength of 405 nm, Zr-irradiated AlN exhibited isolated point-like emitters with fluorescence in the spectral range theoretically predicted for spin-defects. However, similar defects emitting in the same spectral range were also observed in AlN irradiated with Kr ions as well as in as-grown AlN with intrinsic defects. This result is supportive of the earlier theoretical predictions, but at the same time highlights the difficulties in identifying the sought-after quantum emitters with interesting properties related to the incorporation of Zr ions into the AlN lattice by fluorescence alone. The results of this study largely contribute to the field of creating quantum emitters in AlN by ion irradiation and direct future studies emphasizing the need for spatially localized Zr implantation and testing for specific spin properties.more » « less
-
Newly discovered silicon nitride quantum emitters hold great promise for industrial-scale quantum photonic applications. We assess the performance of intrinsic room-temperature SiN single-photon emitters for quantum key distribution, showcasing their exceptional brightness and single-photon purity.more » « less
-
Abstract Diamond color centers have been widely studied in the field of quantum optics. The negatively charged silicon vacancy (SiV − ) center exhibits a narrow emission linewidth at the wavelength of 738 nm, a high Debye–Waller factor, and unique spin properties, making it a promising emitter for quantum information technologies, biological imaging, and sensing. In particular, nanodiamond (ND)-based SiV − centers can be heterogeneously integrated with plasmonic and photonic nanostructures and serve as in vivo biomarkers and intracellular thermometers. Out of all methods to produce NDs with SiV − centers, ion implantation offers the unique potential to create controllable numbers of color centers in preselected individual NDs. However, the formation of single color centers in NDs with this technique has not been realized. We report the creation of single SiV − centers featuring stable high-purity single-photon emission through Si implantation into NDs with an average size of ∼20 nm. We observe room temperature emission, with zero-phonon line wavelengths in the range of 730–800 nm and linewidths below 10 nm. Our results offer new opportunities for the controlled production of group-IV diamond color centers with applications in quantum photonics, sensing, and biomedicine.more » « less
An official website of the United States government
